Liquid drops and surface tension with smoothed particle applied mechanics
نویسندگان
چکیده
Smoothed particle applied mechanics (SPAM), also referred to as smoothed particle hydrodynamics, is a Lagrangian particle method for the simulation of continuous flows. Here we apply it to the formation of a liquid drop, surrounded by its vapor, for a van der Waals (vdW) fluid in two dimensions. The cohesive pressure of the vdW equation of state gives rise to an attractive, central force between the particles with an interaction range which is assumed to exceed the interaction range of all the other smoothed forces in the SPAM equations of motion. With this assumption, stable drops are formed, and the vdW phase diagram is well reproduced by the simulations. Below the critical temperature, the surface tension for equilibrated drops may be computed from the pressure excess in their centers. It agrees very well with the surface tension independently determined from the vibrational frequency of weakly excited drops. We also study strongly deformed drops performing large-amplitude oscillations, which are reminiscent of the oscillations of a large ball of water under microgravity conditions. In an appendix we comment on the limitations of SPAM by studying the violation of angular momentum conservation, which is a consequence of noncentral forces contributed by the full Newtonian viscous stress tensor.
منابع مشابه
Modelling free surface flows with smoothed particle hydrodynamics
In this paper the method of Smoothed Particle Hydrodynamics (SPH) is extended to include an adaptive density kernel estimation (ADKE) procedure. It is shown that for a van der Waals (vdW) fluid, this method can be used to deal with free-surface phenomena without difficulties. In particular, arbitrary moving boundaries can be easily handled because surface tension is effectively simulated by the...
متن کاملNumerical Investigation of Vertical and Horizontal Baffle Effects on Liquid Sloshing in a Rectangular Tank Using an Improved Incompressible Smoothed Particle Hydrodynamics Method
Liquid sloshing is a common phenomenon in the transporting of liquid tanks. Liquid waves lead to fluctuating forces on the tank wall. If these fluctuations are not predicted or controlled, they can lead to large forces and momentum. Baffles can control liquid sloshing fluctuations. One numerical method, widely used to model the liquid sloshing phenomena is Smoothed Particle Hydrodynamics (SPH)....
متن کاملModeling of surface tension and contact angles with smoothed particle hydrodynamics.
A two-dimensional numerical model based on smoothed particle hydrodynamics (SPH) was used to simulate unsaturated (multiphase) flow through fracture junctions. A combination of standard SPH equations with pairwise fluid-fluid and fluid-solid particle-particle interactions allowed surface tension and three-phase contact dynamics to be simulated. The model was validated by calculating the surface...
متن کاملSimulation of Unsaturated Flow in Complex Fractures Using Smoothed Particle Hydrodynamics
on SPH to simulate three-dimensional invasion of nonwetting and wetting fluids in fracture apertures with Smoothed particle hydrodynamics (SPH) models were used to complex geometries. Such complex processes are very simulate unsaturated flow in fractures with complex geometries. The SPH is a fully Lagrangian particle-based method that allows the dydifficult to model with traditional grid-based ...
متن کاملEvaluation of Surface Tension Models for SPH-Based Fluid Animations Using a Benchmark Test
In this document, we provide additional images and plots to the main paper. First, images of the equilibrium state of benchmark 1 (drop formation) are shown for all surface tension models presented in Sec. 3 in the main paper, combined with different SPH methods (IISPH [ICS∗14], PCISPH [SP09], and WCSPH [BT07]). Further, individual plots for velocities, surface tension forces, and pressure forc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
دوره 62 4 Pt A شماره
صفحات -
تاریخ انتشار 2000